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In the previous paper [ 1 ], the stress distribution and the expected number of successive 
fibre breakages around broken fibres were calculated. It showed the following results. The 
fracture process that the crack originates from one isolated broken fibre and propagates 
due to the stress redistribution following the fibre breakage is unlikely to occur in the real 
unidirectional fibre-reinforced composite material. The matrix-failure is considered to 
play an important role in the fracture process of real composite materials. In the present 
paper, the stress (or strain) distribution and the expected number of successive fibre 
breakages around broken fibres are calculated when the matrix-damaged regions exist. 
The stress (or strain) distribution is obtained based on the three-dimensional hexagonal- 
array shear-lag model. Uniform shear force is assumed to occur in the matrix-damaged 
region. The expected number of the successive fibre breakages is calculated on the 
assumption that the flaws in the fibre follow a Poisson process. 

1. Introduction 
Probabilistic aspects of the strength of composite 
materials have been studied by many workers. 
Some have paid attention to the scatter in fibre 
strength and have attempted to understand the 
behaviour of composite materials from micro- 
mechanical standpoint. In order to obtain the 
probability of the fracture stress, they intro- 
duced some assumptions to the load redistribution 
around the broken fibres, for example, ELS 
(equal load sharing) rule [2] and LLS (local load 
sharing) rule [3]. However, these assumptions are 
not realistic and may lead to a fracture pattern 
that does not occur in the real composite. 

In order to clarify this problem, the fracture 
mechanism was studied based on the more realistic 
stress model in the previous paper [1]. The stress 
distribution around broken fibres was calculated 
on the three-dimensional hexagonal-array shear-lag 
model [5] and the expected number of successive 
fibre breakages was obtained on the assumption 
that fibres break at the flaws which follow a 
Poisson process in space. It shows that the 

expected number of flaws which break due to the 
stress increase in the neighbouring fibres is very 
small compared with not only that of  LLS rule 
but also that of the flaws breaking under the 
initially given uniform strain and presenting within 
the distance ~'* in the adjacent fibres. ~'* is the size 
of the region of increased stress (or strain) in the 
neighbouring fibre. Therefore, multiple fibre 
breakage is essential for the fracture process of real 
composite. In the present paper, the matrix failure 
is assumed to occur if the shear force between a 
broken fibre and its neighbouring one exceeds a 
certain level. The strain and the expected number 
of successive fibre breakages are calculated on the 
same assumption as in the previous paper [1]. 

2. Theory 
2.1. Displacement and strain around 

broken fibres with matrix failure 
Consider an infinite unidirectional fibre-reinforced 
composite as indicated in Fig. 1. Displacement 
and strain around broken fibres are analysed on a 
hexagonal-array shear-lag model when matrix 
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Figure 1 The analytical model; (a) hexagonal-array shear-lag model and its coordinate system. (b) free body diagram as 
a typical element. 

failure exists. Both the fibre and the matrix are 
assumed to be linear elastic except the matrix- 
damaged region. The coordinates and a typical 
element are shown in Fig. 1. 

The axial force Pmn(Z) supported by (m, n) 
element is assumed to be expressed by using axial 
displacement wren(z) of the fibre centre as 

dwmn 
p,,~,(z) = E L A E - -  (1) 

dz 

where EL and A E are Young's modulus of the 
composite in the fibre direction and cross-sectional 
area of an element respectively. Shear force q ~ ( z )  
between elements (m, n) and (k, t) is assumed to 
be given as 

q~%(z) = G*(wkt--w,.~) (2) 

where G*[= GLT/(3) 1/~] is an equivalent shear 
stiffness and is determined so that the shear 
modulus of the present model coincides with that 
of real composite GET (see [1]). When the (k, l) 
element is not adjacent to the (m, n) element, 

/el 
q m n  is zero.  

The equilibrium equation of this system is 
written as 

(re,n) 

dpm____.~ + ~, qkm~(Z ) = finn(Z) (3) 
dz (k,t) 

(m~n) tel 
where (k~O qmn indicates a summation as 

( rn,n ) 
E ,91 m+l n m - l , n  gtm, n+l 

q m n  : q m n  ' + q m n  + ' ~ m n  
(k,t) 

+ qrn~m n-1 4- qmnm+l'n-I 4. qmnm-l'n+l (4) 

and finn(z) is the term which is induced by the 
defects (fibre breakages and matrix failure) in the 
composite [4]. 

In the matrix-damaged region, the matrix is 
assumed to support a constant shear force ~ which 
is independent of the relative displacement. When 
the fibres break at the positions {(zi, m i, ni); 
i = 1, 2 . . . .  , N}, finn is expressed as 

( In, II) 

fm~(z) : ~ 3kz (z~ r~t (z~ 
(k,t) 

N 

+e~A~ Z 6,,,~}.n~ {~(z--O}~ ~ (5) 
i = l  

where 

kl {Z.~ I O~n(Z) = It[ lqmnt , - -q  tli s ign[q~(z)]  (6) 

C ~ = ~ lim [Wminj(Zi+ A)--Wrninj(zj--A)] 
A--~O 

= [A A>O 
[IIAtll 

t 0 A < 0  

1 A > 0  

sign A = 0 A = 0 

--1 A < 0  

I~n(z) = { 1 in the matrix-damaged region 

0 all but above region 

( 1 m --n 
6,nn 't 0 m ~ n  

(7) 

and 6(z) is Dirac's delta function. 
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Substituting Equations 1 and 2 into Equation 
3, a following difference-differential equation for 
Wren is obtained: 

(re,n) 
ELA E dZwmn + G* ~ (Wkl  - -  Wren)  = f i nn  

dz 2 (~,t) 

(8) 

Equation 8 is rewritten in a nondimensional form 
as (re,n) 

d 2Wrnn+ ~ (W m _ W . m )  = Fro. (9) 
dz2 (k,I) 

where 
(re, n) N 

= Qmn(~)I~n(~) ..b Z ~mmj~nnj 
(k,z) j =l 

d x ~ {~(~- -~j)}w ~ (lO) 

Qkmln(~) = Q~mtn(z)/[e~(G*Er.AE) ''2] (11) 

W? = ~ l~fl {~u "~ A ) -  Wl, njnj(~j - -A)}  
a--,o (12) 

= {[G*/(ELA~.)] ~/2}z (13) 

Wm.(D = {[G*](ET,A~.)lln/e=}wm.(z) (14) 

Stun(f) = Pm.(z)/(ET,AEe~) = dW/d~ (15) 

and e= is a strain given at f = + ~. 
Boundary conditions are 

Sm. = 1 ~- = +_oo (16) 

for all fibres, and 

Stnjrtj(~j) = 0 (17) 

for broken fibres (j = 1, 2 . . . . .  N). 
Instead of solving this problem based on the 

above boundary conditions as shown in Fig. 2a, a 
superposition principle is applied as shown in Fig. 
2. The solution of Fig. 2b is self-evident and 
Wren = ~. Therefore, only the solution of Fig. 2c 
is required to be solved. 

Let us introduce auxiliary functions I~(~', 0, @) 
and F(f,  O, r which are expressed by W ~ ( f )  and 
Finn(f) as 

/71=-oo /1.=-oo 

x exp [-- i(mO + nq~)] (18) 

F(~', 0, qS) : ~. ~. Finn(f) 
m=_~ tl= -o~ 

• exp [-- i(mO + n~b)] (19) 

I~, Win. and if, F.,n are pairs of Fourier trans- 
form, respectively, so that W~. and Finn can be 

576 

S=1 S=I 
f i"l' f'l' I '1'I ' I ' I '  s=0 

r 
o : + 4,  S = I  
S=O r 

- f77 
Figure 2 Superposition principle. 

expressed by I~ and F as 

x exp [i(mO + nq~)] dO d4) (20) 

x exp [i(mO + nr d0d~ (21) 

The matrix failure is assumed to occur only in the 
regions I f - - f  j I<  aj around the broken fibres as 
shown in Fig. 3. Substituting Equation 10 into 
Equation 19,/~ is written as 

N [(m]'N) 

J=~ :\ (k,D 

X {exp [i(mjO + nj~)] -- exp [i(kO +/~b)] } 
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Figure 3 A sketch of matrix 
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where 

{10 
u(~) = ~ < o 

Substitution of Equations 20 and 21 into Equation 
9 gives 

L3f J 
x exp [i(mO +nr dO dO = 0 (23) 

where 

X(0, O) = {2[3 -- cos 0 -- cos r -- cos (0 -- 4))]}- 

(24) 

As Equation 23 holds for any pair of (m, n), the 
following equation is obtained: 

a=# 
3~--r-X2~ = ~. (25) 

As W is finite at ~" = + ~, the general solution of 
Equation 25 is written in an integral form as 

1 I ~  
ff'(~', O, O) - 2X ~_ exp[--Xl~'--sl]  

x/~(s, 0, 0)d s 

N 

= Z { W~ sign (~" -- ~./) 
.i=1 

x exp [-- Xl ~" -- fil + i(m./O + n./0)]} 

1 (m~j,n./) r.~.F,.~. / 
2)t Z Io~./_a./ Qm./nj(s)m 

( k , t )  

x e x p [ - X l f - s l ] d s  

x {exp [i(mjO + n./0)] 

- exp [i(kO +/r ( 2 6 )  

Therefore, the displacement Wren(f) is obtained 
by substitution of Equation 20 into Equation 21. 
The strain Smn(f ) is written by using W(f, O, O) as 

(12-~') ~ " ~r 31~ ~ ( 3-}- Smn(~ ) = 1+ a-~a-Tr 

x exp [-- i(m 0 + n 0)] dO dO. -(27) 

However, the unknown quantities W f and 
kl  Qm./nj are included in the solution of l# (Equation 

26). These values are obtained so that W,n~ and 
Stun satisfy the boundary conditions at the 
positions of the fibre breakages and on the matrix- 

damaged regions, respectively. Considering 
Equations 6 and 17, the boundary conditions are 
expressed with Ir as 

-Tr-rr ~ ~=0 

x exp [-- i(msO + ni0)] dO dO + 1 = 0 (28) 

k |  = a,,,jnj III IW m -W m jn j l - a l l l s i g n (W m -  Wmn) 

(29) 
where 

Wrnjnj -- Wm= fs f~ir' W{exp [-- i(mjO 

+ nj0)] -- exp [-- i(kO +/0)]} dO d 0. (30) 

2.2. Probabilist ic proper t ies  of  f ibre 
s trength and expec ted  n u m b er  of  
f ibre breakages 

Fibre strength depends on the flaws in the fibre, 
that is, the fibre breaks at the flaw position when 
tensile strain exceeds a certain level which depends 
on the flaw size. The location and the size of the 
flaw in the fibre are probabilistic quantities. The 
probabilistic properties of the fibre strength can be 
obtained when those of the flaw are given. Now, 
we introduce an assumption that the existence of 
the flaws follows a Poisson process in space, that is, 

1. The probability of the existence of the flaws 
does not depend on the existence of any 
other flaws. 

2. The probability of the existence of more 
than one flaw in the same position can be 
neglected. 

If the above assumptions are valid, the only quan- 
tity characterizing the probabilistic aspects of the 
fibre strength is the expected number pr(e)  of the 
flaws breaking under a strain smaller than e and 
existing in a unit-length fibre. The quantity 
pr(e)  is determined from the probability distri- 
bution function F(elL) of the breaking strain of 
the fibre whose length is L. The probability that 
the fibre does not break under a strain e is written 
as 1 - -F (e lL) .  This probability is equal to the 
probability exp [-- LPr(e)] that no flaw breaking 
under e exists in the fibre. Therefore, /~r(e) is 
written as 

/JF(e ) - - - - -  l n [1 - -F(e rL) I /L .  (31) 

When the fibre breaking strain is ruled by a two- 
parameter Weibull distribution, PF(e) can be given 
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Figure 4 Change of the strain in the fibre. 

in a power form of (e/eL) as 

gF(e) = (eleL)'Y/L (32) 

where 7 and eL are a shape parameter and a scale 
parameter, respectivelyl 

When the strain in the fibre changes from 
Co(Z) to e~(z) as shown in Fig. 4, the probability 
P(exl e0) that the fibre breaks in the region [zb z2] 
is obtained in the following way. In the infinitesi- 
mal region [z,z + dz], the expected number 
#f(z) dz of the flaws breaking under above strain 
change is written as 

/If(z) dz = Ill #r{el(z)} --/AF{E0(Z) } Ill. (33) 

The expected number Kf of sucti flaws existing in 
the region [z~, z2] is given by the integration of 
Equation 33: 

~:f = = 1[[/.tF {el(z)} 
I 

--/~F{eo(Z)} III dz. (34) 

When the breaking strain of the fibre follows 
Weibull distribution, Equation 34 is rewritten by 
using Equation 32 as 

As the flaw follows Poisson process, the prob- 
ability Ps that no such flaw exists, in other words, 
that the fibre does not break, is written as 

Ps(elleo) = exp (-- Kf). (36) 

3. Numerical analysis 
It is almost impossible to obtain the solution of 
general cases expressed in Section 2.1, so that the 
special cases that the fibres break at ~" = 0 and the 
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matrix is damaged in the region - a < f < oz 
around the broken fibres are solved. 

In the case of a single broken fibre, equation of 
Wo(= W~ T(~') (= r ~ . s ( ~  ) = W0o(f) - Wlo(f)) 
and Q(f) (= Q~os(f)) are,lead from Equations 
28, 29 and 30 as 

Wo = 1 + B(s) Q(s)ds A (37) 

a( f )  = T(~)--[JT(e) (38) 

Y? aT(f) = WoB(f) + C(f -- s) Q(s) ds (39) 
oz 

where 

( 1 )  ~ ~ ~r 
A = f_gf] XdOdr 

B(f) = f_~r f,~r X2 exp ( -  x i ~-i) d0 d~b 

= -~ exp (-- X[ ~[)dO d~. 

(40) 

These integrals are executed numerically. The 
integrals for 0 and 4~ are accomplished by a Gauss- 
integral method which has eight integral points in 
each direction. Equations 37, 38 and 39 are 
rewritten into simultaneous equations for Wo, 
Q~ (= Q(kAs)) and Tk (= T(kAs)) by replacing 
the integrals in the above equations with a sum- 
marion forms according to the numerical integral 
method. 

When more than one fibre is broken, the 
external terms W ~ and Qkljn j are calculated with 
an iteration method. The initial values are given 
by the use of the solution of one broken fibre 
case. The flow chart of this iteration process is 
indicated in Fig. 5. The parameters in Fig. 5 are 

x exp {i[(m z - mj) 0 + (n I - nj) 4]} dO d~ 

B_m_.in_j r = Gm1_mi n l_n j ( f )  - -  Gp_raj q-hi(f) m l n l P f l  ~.~., , , 

m . n . a b  
C.,z~zpq~jJ ~ ~ = H - ~ l - ' ~ i , ~ l - ~ j ( ~ ) - H p - m j , q - ~ F )  

D~jnj(f) = Cmj_m, nj_n(~) 
e.%jp  = i %  m -np_  

(41) 



[ n : 0  I 

{wjO}o (arid { l~jr l j ( (J)}  0 (:Ire cctlcuk:lted from the solutions 
Wren Qrld Stun of ti le one broken fibrecclse to s(::ttisfy 
the boundary condit on (It ~ = 0  

l 
- - - - I  n = n §  I 

1 
" - o "~m~rC'Bm[ntpq(S){Qr~tn.( )}n-1 ds Z=, Aji{Wt }n: 1.,__Z,~:~ L" mini Pq S 

ab - M mjnj {T~iniCC)}n-tZ-_; [{ Bm,n,ob(; )} { W h n  
(m[,nt~ ,'a m , " , ' b  

-.ZZ: t Cm}t~pq ( ~-  S) { O.~r~(S) } n-1 ds ]  
{P,q) J-OI 

ab ab ) {Omjni(;)}n=lll{Tmin,({; }n-- P (~,~((TPqn,(a)Inll[ 
(P,q) 

~: I {W~176 {W~ l j=1 
M (m"ni) r 
Z ;~2Eo( f~pq  "l - P_q.l I r ~ , l [ a l  L I m ~ m i ~  pq j:,m,q) '0 ,~mjn,,n {Q,,,,,,j,n-,,ds<E2~(-6~.q).loI,Qmjni,,,IdS 

Wmn(~): ;~ '~ [ D~n]((~ ) {wjO}n 

*(ip~ ]': E.~njpq(C-s){OmPqnj(S)ln ds ] 
' o  -{Dmj4C)I{Wj }n 

§176 d--~-{Emm, npq(C-S)} {OPmqn (s) }nClS ] JJ Jj 

1 

1 
lstop 1 

where 

1(2~)~ ~ 
x exp [-- X [ f [ + i(m 0 + n r dO de 

( 1 t ' [ =  f ~  1 
/ - /m.(r = \2,r] J-" 2~  

x exp [--Xl~'l + i(mO + nO)] dO dq~ 

In Equation 41, (m s, nj) and (m z, nt) mean those of 
the broken fibres. The values of  1 x 10 -7 and 
1 x 10 -6 are taken as permissible errors el and e2 
shown in Fig. 5, respectively, for present analysis. 
The difference is of  the order of  10 -4 in Stun 
(m, n _~ 4) between two cases; the first is the case 
that the integral region [--rr, rr] x [--rr, Tr] is 
divided into 4 x 4 and the other is the case that  
the region is divided into 2 x 2 regions. Therefore, 

Figure 5 Flow chart of the iteration process. 

the latter (2 x 2 regions) is adopted because of  
computer time. The increment A s = 0 . 0 5  is 
chosen in the present paper. 

4. Numerical results and discussion 
In the preceding sections the equations for this 
problem are obtained, neglecting the effects o f  
transverse displacements. Solving these equations 
numerically, the nondimensional strain in the 
fibres and the nondimensional shear force between 
the neighbouring fibres are obtained. Then, the 
expected numbers of  successive fibre breakages 
around the broken fibres are also calculated with 
the use of  the strain in the fibre. 

The nondimensional strains $1o(~') and Su(~'), 
and the nondimensional shear force q~(~)  are 
shown in Figs. 6, 7 and 8 when one fibre is broken 
at rn = n = ~" = 0. The case that  the reaction force 
in the matrix-damaged region is assumed to be 
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Figure 6 Nondimensional strains $1o(~') and $11(~'), and 
nondimensional shear force qo~o~ ") for the case fl = 0. 

zero (fl = q/qmax = 0) is shown in Fig. 6. In Fig. 6a, 
$Io(~') is shown as a function of  ~" for various 
values of  c~. The maximum value of $1o(~'), which 
appears at ~" = a, decreases with increasing a. In 
the region ~" > a, $1o(~') decreases rapidly, becomes 
smaller t h a n  1 (that is, unloading regions appear) 
and gradually converges to 1. The coordinate ~'1"o, 
where $1o(~'~o)= 1, increases with c~. Sli(~') is 
shown in Fig. 6b. I S1:(~') -- l I is much smaller than 
I S:o(~') ~ 1 I. For small a, $11(~')gradually decreases 
even in the region ~" < a. However, $11(~) increases 
in the region ~" < 1.1 for a = 1.6. As c~ becomes 
larger, the maximum value of  $11(~') increases for 
a < 0 . 4 ,  but decreases for a > 0 . 4 .  The ratio 
between maximum strain changes in (1, 0) fibre 
and in (1, 1) fibre increases with a. The shear force 
q~(~') is shown in Fig. 6c. As ~ = 0 is assumed, 
q~(~') = 0 where ~" < a. Its maximum value is 
almost independent of  a (q~~ ~ 0.42). 

In Fig. 7, $1o(~'), Sll(~') and q~O(~) for the case 

Figure 7Nondimensional strains SloG') and Sl~(g'), and 
nondimensional shear force to the qooG') for case # = 0.5. 

0.5 

v s  
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/3 = 0.5 are shown as a function of  ~" for various 
values o f  a. The maximum of  $1o(~) appears at 
~" = 0. Sto(~') decreases gradually with ~" where 
~" < a. In the region ~" > a, Sto(~') rapidly decreases, 
becomes less than 1 and converges to 1 finally. 
$11(~') has a tendency to decrease gradually in the 
region ~" < a similar to $io(~'), and shows a trend 
similar to Slt(~') for the case t3 = 0. q~O(~-) is also 
shown in Fig. 7c. It is noteworthy that the maxi- 
mum of  q~O(~.), which appears at ~" = ~, gradually 
decreases with increasing a. q~(~') is qmax/2 in the 
region ~" < a because/3 = 0.5 is assumed. 

1 02 9:0.2 13=1 �9 ~ ; 2 : 0 A ,  
"" | 01 I ~ \ " ~ , .  (z=O.8 

�9 / ' % \ \ " /  =:1.6 

0 1 ; 2 
(b) 

Figure 8 Nondimensional strains S,0(~') and S.G'), and 
nondimensional shear force qoto~ ") for the case/3 = 1. 

$1o(~'), Su ( f )  and q~O(f) for the case t3 = 1 are 
shown in Fig. 8. These figures show similar trends 
to the case/3 = 0.5. 

S,0(0) and Sto(a) are shown inFig.  9 as a func- 
tion of  e for /3=0 ,  0.5 and 1. As mentioned 

above, S,o(0) and Slo(C~) (except S,0(c0 for the 
case /3 = 0) decreases with increasing a. $1o(0) 
increases with /3, but on the contrary, Sxo(C0 
decreases with increasing /3. For ~ = O, Slo(a) is 
greater than $1o(0). 

qmax is shown as a function of  a in Fig. 10 for 
13 = O, 0.5 and 1. As mentioned before, q m ~  for 
the case /3 = 0 is almost independent of  a. The 
greater /3 becomes, the faster qmax decreases with 
increasing a. These results are very interesting and 
important because of  the following reasons. If  
/3 = 0, the matrix-damaged regions spread infinitely 
when the load exceeds a certain level that the 
matrix failure arises. If/3 ~a 0, a value o f  c~ exists 

1.0 

1.1 

v o 
to 

o 
v 

O . . . .  . . . . .  

s,0(a) p~l p_L-~.5 
0 1 0~ 2 

Figure 9 Nondirnensionat strains S,o(0) and Slo(cO for 
/3 = 0, 0.5 and 1. 

0.5 [3=0 

0.1 , , , p = l ,  ~ ,  

0.05 
0.1 0.2 0.4 0.8 (7,. 1.6 

Figure 10 Maximum nondimensional shear force for (~ = O, 
0.5 and 1. 
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Figure 11 Broken patterns of fibre. 

corresponding to the external force. If  the load is 
set constant (that is, qmax is set fixed), a for the 
case/3 = 0.5 is greater than that for the case/3 = 1. 

Results are obtained when more than one fibres 
are broken neighbouring each other. However, the 
results for the case/3 = 0 are unrealistic and those 
for the case /3 = 1 possesses the trends similar to 
those for /3= 0.5, so that only the results for 

= 0.5 are shown hereafter. The broken patterns 
calculated are shown in Fig. 11. The value qmax is 
plotted in Fig. 12 as a function of  M (number of  
the fibres broken adjacent to each other) for 
various a. It increases with M. This phenomenon 
means that the matrix-damaged regions spread 
noticeably as the flaw size grows. Furthermore, 
the chance that the broken fibres are linked to 
each other increases with the flaw size M. The 
value qmax is also shown as a function of  a for 
several flaw sizes M in Fig. 13. It decreases with 
increasing a for M > 1, too. 

The expected number Krnn of successive fibre 
breakages around a broken fibre is shown in Fig. 
14 as a function of  a for /3=0,5 .  The shape 
parameter 3' of  the fibre strength is assumed to 
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Figure 12 Maximum nondimensional shear force as a 
function of flaw size M for various a. 

be 5 in the present analysis. This value is reason- 
able for glass or carbon fibre. At first, K t0 increases 
with a, but begins to decrease at a ~ 1 because of  
the combining effects of  decreasing maximum 
strain and increasing the size ~'~o of  the region of  
increased strain. The displacement Wo where a 
fibre is broken is also shown with a chain line in 
this figure. Wo increases in proportion to a. This 
phenomenon is very important because the strain 
in the fibre apart from the broken one is propor- 
tional to Wo. Therefore, Kmn increases almost in 
proportion to a, when the fibre locates distant 
from the broken one. 

The expected number 2 ~ •rnn of  successive 
fibre breakages occurring in the surrounding fibres 
is shown in Fig. 15 for several values of  a. It 

1 ~ M =  [3=0"5 

0.2 

o.1 M :  Flow Size 

i i i ...... i f 

0.05 0.1 0.2 0.4 0.8 Or. 1.6 

Figure 13 Maximum nondimensional shear force as a 
function of a for various flaw sizes. 
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Figure 14 The expected number Krn n of successive fibre 
breakages for one broken fibre and the displacement Wo 
of the (0, 0) fibre at ~" = 0. 

increases faster than M, and is approximated as 

~ 0  K m n ~ C M M  k (42) 

C~ and k ( >  1) are constants. This means that 
the probability, that a flaw grows, increases with 
the flaw size. 

5. Conclusions 
The strain in the fibres around the broken fibres 
with matrix failure is calculated based on a 

,~ I 20 13=0.5 
Y=5 

10 

hexagonal-array shearqag model, and the expected 
number Kin, of  successive fibre breakages is 
obtained with the assumption that the flaws in 
the fibre follow a Poisson process. From these 
analytical results, the following conclusions are 
obtained. 

1. The strains (SloO) and Slo(a))  decrease 
when the size a of the matrix-damaged region 
becomes larger except Slo(a) for the case fl = 0. 

2. Strain increasing region extends noticeably as 
becomes larger. 
3. For the case ~ = 0, the maximum shear force 

qmax is almost independent of ~. It means that the 
matrix failure progresses infinitely. However, for the 
case ~ =~ 0, qmax decreases with increasing a. It 
means that a size of the matrix-damaged region can 
be obtained uniquely if an external force is given. 

4. The maximum shear force qraax increases 
with flaw size M. 

5. The expected number rmn of the fibre break- 
ages apart from the broken fibre increases in pro- 
portion to the displacement Wo at m = n = f = 0. 

6. If the size a is small, the expected number 
E 0 K mn around the broken fibres increase with a. 
However, if the size a becomes large, E ~ Kmn 

begins to decrease due to the decreases of the 
maximum strains. 

7. E ~ ~ mn increases rapidly when the flaw size 
M becomes larger. It means that there is a critical 
flaw size that the probability of  the fracture can 
not be neglected. 

The results obtained in the present paper can be 
basic data for the calculation of practical prob- 
abilistic quantities of  the strength of the compo- 
site materials. The practical probabilistic quantities, 
that is, asymptotic formula of the probability dis- 
tribution function, of the fracture strain will be 
calculated in a coming paper. 
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Figure 15 The expected number E~/Kmn of successive 
fibre breakages as a function of flaw size M for various a. 
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Appendix: Homogeneous and orthotropic 
model 

A strain around broken fibres is also obtained with 
the assumption that composite materials are 
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homogeneous and orthotropic. When the trans- 
verse displacements are neglected, an equilibrium 
equation is written with the use of an axial displace- 
ment w as 

[b2w b=w I d2w 
GLT [ ~ X  ~ + by=] + E L dz----g = f(x,  y, z). 

(al) 

The function f(x, y, z) in the right-hand side is 
induced by the defects in the composite. Equation 
A1 is rewritten in a nondimensional form as 

b2W bzW b=W 
0f = F --brt2 + bt.2 - F(~, r/, t.) (A2) 

W = I1--~tGr:rt'/21w (A3) 
t roe~ t eL ] ) 

GLTi /2 x y t. = z (A4) 
ro n ro ro ~EL ] 

where 1fro 2 = A~. When matrix failures occur in the 
region around the broken fibres, F(~,r/, ~') is 
written as 

F(Lrl, D = Y~ N ( L n ) u ( 1 - p )  of {8(t.-t.j)} 
j= l  

~ ] + ej(~:, ,7, t . )u% - I t  - t.~ I) Uo { 8 ( o -  1)} 

(A5) 

W i (~, ~) = �89 lim [ W(~, r/, t. + A) - W(~, ~, t. - A)] 
A ~ 0  

(A6) 
Oj (~, ~/, t.) = �89 lira {W(p + A, 0, ~) 

A ~ 0  

- -  W ( p  --  A, 0, ~b)} (A7)  

p= = ( ~ _ ~ j ) 2 + ( r T _ ~ S )  z, t a n 0  = r//~ 

Application of the theory of Green's function 
gives the solution of Equation A2 as 

1 " , , , ) l d ~ , d r / , d t  , ,  w = 

;' "{If = .~  o'<~ g(P', 0') 

• [ R' J~'=r: ~-rjq<~j 

[p cos (0 -- 0 ' )  -- p' 
R 3 ]p,= d0'dt.'} (AS) X 

t 

R = = p= +p'=--2pp 'cos(O--O')+( f - - f ' )  = 

The differentiation of W by t. gives a nondimen- 
sional strain as 

'  .{Ho 
S = dt. - 4~r1=1 '< 

[ R2 -- 3(t. -- t.i) 2 ] 
x RS p'dp'dO' 

j~'= ~-1 

+ <o, ; :~  
~ ~ } 

x R5 dO' d~' 
Jp '= l  

(A91 

The first term of S decreases in proportion to R-a ,  
and the second term decreases in proportion to 
R -s when It. --t.jl is not large,* so that stain can 
be approximated with the first term alone when R 
is not small. 

References 
1. H. SUEMASU, Trans. Jpn. Soc. Compos. Mater. 8 

(1983) 1. 
2. B.W. ROSEN, AIAA J. 2 (1964) 1985. 
3. C. ZWEBEN, ibid. 6 (1968) 2325. 
4. J. G. GOREE, L.R. DHARANI and W. F. JONES, 

NASA, CR, 3453 (1981). 
5. J. M. HEDGEPETH and P.V. DYKE, J. Compos. 

Mater. 1 (1967) 294. 

Received 7March 
and accepted 15 June 1983 

where 
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[ oos(o:0)-p:] = 2f ' 
4 

4P2 c~ E R1R2i 4 - i _ ( R I  + R2)(R ] + R~) 
i=O 

5 5 RIR2(R1 + R2) 
dO ~ kR-S 

R~ = [ l + p 2 + 2 p c o s O + ( ~ - - f ' ) 2 ]  1/2, R 2 = [ l + p 2 - - 2 p c o s O + ( ~ - - f ' ) 2 ]  ~:2. 


